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Abstract

Friction dominated, subsonic compressible ¯ow in micro-channels of slowly varying cross-section is treated by developing a

perturbation scheme which yields equations of ``lubrication'' approximation as the ®rst order one. In this context several charac-

teristic problems are encountered, such as isothermal ¯ow, non-isothermal ¯ow with prescribed wall temperature, and non-iso-

thermal ¯ow with prescribed wall heat ¯ux, which includes the adiabatic wall problem as a special case. In all these problems

pressure drops to zero while velocity components increase inde®nitely at a ®nite distance along the channel ± the phenomenon called

``mathematical'' choking observed for the ®rst time in isothermal ¯ow between parallel side walls, Schwartz, L.W., 1987. A per-

turbation solution for compressible viscous channel ¯ows. J. Engrg. Math. 21, 69±86. The problem with prescribed wall heat ¯ux is

characterised, as by Shajii, A., Freidberg, J.P., 1996. Theory of law Mach number compressible ¯ow in a channel. J. Fluid. Mech.

313, 131±145, by the existence of a critical heat ¯ux above which the steady ¯ow cannot be maintained. For the same mass ¯ow rate

this ¯ux is considerably greater in divergent channels, than in convergent ones. These and other results obtained show how the

prevailing viscosity may dramatically alter the ¯ow characteristics in the problem considered, in comparison with more conventional

high Reynolds number ¯ows. Ó 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Compressible gas ¯ows at moderately high values of the
Reynolds number in channels of constant or variable cross-
section are frequently met in several branches of contemporary
techniques and have attracted the attention of several re-
searchers in the literature recently. Since gases usually ¯ow
with relatively high velocities, moderately high values of the
Reynolds number can be maintained in channels of extremely
small width only, in so-called micro-channels. Shear-driven
¯ows in micro-channels occur in externally pressurised thrust
bearings and micromotors, while pressure-driven ¯ows ®nd
very useful applications in problems of integrated cooling of
electronic circuits and superconducting magnets, in cryo-
coolers for infra-red detectors and diode lasers, in high-fre-
quency ¯uidic control elements, etc. Thus, both shear-driven
and pressure-driven micro-channel ¯ows represent an impor-
tant constituent part of what is now called Micro-Electro±
Mechanical-Systems (MEMS) technology (see two excellent
review papers by Ho and Tai, 1996, and Beskok et al., 1996).

The main feature of all these ¯ows is that the e�ect of vis-
cosity is spread over the whole cross-section of the channel, so
that it either competes the inertia, as in the classical boundary
layer theory, or prevails over it, as in the hydrodynamic lu-
brication theory. It is shown by Crnojevic and Djordjevic

(1997) that viscosity competes inertia for high subsonic or
supersonic ¯ow in a micro-channel. In such a case the problem
is described by classical boundary layer equations, but it is
de®ned inversely as the width of the channel, that plays the
role of the boundary layer thickness, is given, while the pres-
sure and other ¯ow quantities, including the centreline veloc-
ity, that plays the role of the free stream velocity, are required.
In spite of this ``inconvenience'', however, it is shown in the
paper that certain modi®ed Stewartson's transformations can
be constructed in order to convert the governing equations
into a fully incompressible form. This modi®cation is caused
by the fact that the ¯ow along the centreline of the channel is
not isentropic. The results obtained show dramatic e�ects that
viscosity may have upon the ¯ow characteristics in this case, in
comparison with more conventional high Reynolds number
¯ows. For low subsonic ¯ow in a micro-channel viscosity
prevails over inertia, so that the ®rst order equations governing
such a problem represent actually a ``lubrication'' approxi-
mation. An isothermal ¯ow between parallel plates of this type
was treated by Schwartz (1987), while the problem with ap-
plied heat ¯ux over a straight circular channel was treated by
Shajii and Freidberg (1996) in conjunction with the possible
cooling of large-scale superconducting magnets that might be
used in future magnetic fusion experiments. In these papers,
several interesting and unexpected ¯ow phenomena were dis-
covered, such as ``mathematical'' choking in which pressure
drops to zero over a ®nite length of the channel, the existence
of some critical heat ¯ux/mass ¯ow rate above/below which
steady ¯ow cannot be maintained, etc.
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This paper represents a relatively simple extension of the
papers by Schwartz (1987) and Shajii and Freidberg (1996) to
account for the e�ect of variable width of the channel on the
friction dominated, low Mach number subsonic ¯ow. In order
to treat the problem analytically, we introduce the following
two small parameters of the same order of magnitude: maxi-
mum angle of the channel wall to the channel axis and (Mach
number)2/Reynolds number, and develop a regular perturba-
tion scheme which yields a set of non-linear equations at each
order. Equations of at least ®rst two orders can be solved
analytically. We treat separately isothermal ¯ow and several
non-isothermal cases of ¯ow. In the isothermal ¯ow case we
discuss the e�ect of variable width of the channel on the
``mathematical'' choking, and study this phenomenon in more
details by analysing the solutions of the second order equa-
tions. We ®nd that singularities appearing in these solutions at
the critical cross-section of the channel are stronger than in the
®rst order solutions, and point out a possible way for the
resolution of the question concerned with the ®nite values of
physical quantities in this cross-section.

In the non-isothermal ¯ow case we focus our attention to
the in¯uence of some applied heat ¯ux on the ¯ow character-
istics, and in particular on the mass ¯ow rate through the
channel. In the realistic case in which the dependence of the
transport coe�cients on the temperature is pronounced we
®nd, as in Shajii and Freidberg (1996), the existence of two
bifurcated solutions, one of which is physically not acceptable.
Also, steady solutions for the given pressure drop exist only if
the heat ¯ux lies below a critical value, and the mass ¯ow rate
is above a corresponding critical value. Both critical values are
evaluated and their dependence on the dimensions of the exit
cross-section of the channel discussed. The results show a very
sharp increase of both critical values with the opening of the
exit cross-section. We discuss to some extent also the value of
the heat output necessary to decrease the exit temperature to
zero.

2. Problem statement and governing equations

The problem under consideration is depicted in Fig. 1
where the upper half of a symmetric channel, in which the ¯ow
is two-dimensional, is sketched by using non-dimensional de-
notations. It is assumed that the cross-section of the channel
varies slowly in x-direction, i.e. that amax � e� 1 is a small
parameter. All physical quantities will vary slowly in x-direc-
tion in this case too, and in order to express their slow varia-
tions explicitly we will introduce the slow coordinate n� �x.
Also, the transverse velocity component v will be much smaller
than the longitudinal one u everywhere, and we will write:
v(x,y)� �V(n,y), where V(n,y) is an O(1) transverse velocity.
Another small parameter of the same order of magnitude will
be cM2

0=Re � k�; k � O�1�, where c is the ratio of speci®c
heats, and M0 and Re are the reference Mach number and the
reference Reynolds number respectively, de®ned in the usual

way by means of the corresponding physical quantities taken
at the origin (see Fig. 1).

Continuity equation, ideal gas law, momentum equations in
x- and y-directions, and the energy equation, written in non-
dimensional form and by using conventional notations read,
respectively:
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Here, Pr�O(1) is the reference Prandtl number. We assume
that a local Prandtl number is constant (independent of the
temperature!), so that non-dimensional values of the coe�-
cients of conductivity k and viscosity l will be equal and will
depend on the temperature according to a power law:
k � l � T n; n P 0. Our aim is to develop an expansion scheme
in which inertia terms in both the momentum equation in the
x-direction and the energy equation, as well as the dissipation
term in the energy equation can be neglected in the ®rst ap-
proximation. For that purpose it is obviously necessary to
assume that Re�O(1), which can be maintained in micro-
channels only. If the Reynolds number attains some moder-
ately high values, one should have in mind that: k� Re � c M2

0 ,
so that the desired form of the ®rst approximation can be
achieved for a low Mach number ¯ow in the channel. In both
cases M0 should be small enough for the theory presented here
to be valid. Possible solutions of (1) should satisfy the non-slip
boundary conditions on the wall,

y � d�n�; u � V � 0; �2�
and the symmetry conditions on the centreline:

y � 0;
ou
oy
� oT

oy
� V � 0: �3�

The boundary conditions for the temperature ®eld on the wall
will be stated later.

Each physical quantity f �n; y� present in (1) will now be
expanded into a regular perturbation series of the form:

f � f0 � �f1 � �2f2 � � � �
In this way, the ®rst order equations read (for simplicity we
will drop the subscript ``0'')
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with the boundary and the symmetry conditions:

y � d�n�; u � V � 0; y � 0;
ou
oy
� oT

oy
� V � 0: �5�

In the ®rst approximation the ¯ow is obviously based on the
balance between pressure and viscosity forces as in the classical
hydrodynamic lubrication theory, and Eq. (4) represent the so-
called ``lubrication'' approximation. Although non-linear, they
are easily amenable to simple analytical methods, as will be
shown in the following sections.Fig. 1. Upper half of a symmetric 2-D channel.
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3. Isothermal ¯ow

As well known, isothermal gas ¯ows are, strictly speaking,
not consistent with the full system of governing equations.
However, due to very small temperature variations many gas
¯ows in engineering can be treated as nearly isothermal. For-
mally, ®rst order equations for an isothermal gas ¯ow in a
channel can be obtained from (4) by inserting T� 1. The
momentum equation yields the following solution for the
longitudinal velocity:

u � ÿ d2

2k
dp
dn

1ÿ y2

d2

� �
;

which is a slowly varying parabola. The continuity equation is
a ®rst order equation in V subjected to two conditions (5). In
addition to the transverse velocity, it leads to the following
equation for the pressure too,

p
dp
dn

d3 � const:

The physical meaning of this constant can be deduced by the
introduction of the mass ¯ow rate through the channel. If _m is
a non-dimensional ®rst order mass ¯ow rate, we will have

p
dp
dn

d3 � ÿ3k _m: �6�

Thus, the pressure decreases in the direction of ¯ow indepen-
dently of whether the channel (nozzle!) is convergent or di-
vergent. This is contrary to the well known results of classical
Gas Dynamics. However, when judging this pressure drop one
has to realise that the ¯ow considered herein is a friction
dominated one, and that its behaviour is consequently more
reminiscent of a Poiseuille-type ¯ow than that of an inertia
dominated classical gas ¯ow through nozzles. Introducing the
mass ¯ow rate _m both velocity components can be written as:

u � 3 _m
2pd

1ÿ y2

d2

� �
; V � 3 _m

2pd
dd
dn

y
d

1ÿ y2

d2

� �
: �7�

Integration of Eq. (6) between the inlet station n � 0 and an
arbitrary cross section of the nozzle yields

1ÿ p2 � 6k _m
Zn

0

dÿ3�n� dn; �8�

where p is the pressure at the arbitrary cross section. This re-
sult can be utilised for a nozzle of given shape and length l to
determine the ®rst order exit pressure pe if mass ¯ow rate is
given, or to determine the ®rst order mass ¯ow rate if the exit
pressure is given. Clearly, the mass ¯ow rate attains its maxi-
mum value for pe� 0, and since the integral (8) does not
converge for n!1, a ®nite (critical) length of the channel
over which the pressure drops to zero will always exist. This
phenomenon is called the ``mathematical'' choking (see
Schwartz, 1987). Clearly, convergent nozzles are more prone to
choking than divergent ones, in the sense that in convergent
nozzles choking occurs over a shorter length. It is to be noted
at this point that both velocity components (7) become in®nite
at the critical cross section of the channel.

We explored this phenomenon in some more details by
going to the next approximation. It yields the following dif-
ferential equation for the pressure p1:

35p2d3p01 ÿ 105k _mp1 � ÿ105k _m1p � 54k Re _m2�pd�0;

(where _m is the second order mass ¯ow rate), which can be
written by using (8) in the following form:

35 _m�p p1�0 � 35 _m1p p0 � 54k Re _m3dÿ3d0 ÿ 162k2 Re _m4pÿ2dÿ5:

This can be formally integrated between the inlet (n � 0) and
an arbitrary cross section by assuming that the inlet pressure is
known and completely contained into the ®rst approximation
p�n�, so that p1�0� � 0, leading to

35 _mp p1 � 35

2
_m1�p2 ÿ 1� � 27k Re _m3 1ÿ 1

d2

� �

ÿ 162 k2 Re _m4

Zn
0

pÿ2dÿ5 dn: �9�

This result, exactly as the one expressed by (8), can be used
twofold. If the mass ¯ow rate through the nozzle is given it will
be fully embodied into the ®rst order mass ¯ow rate, so that
_m1 � 0, then we can determine the correction of the pressure p1

from (9). On the contrary, if the exit pressure is given it will be
fully incorporated into the ®rst order pressure pe, so that
p1�n � l� � p1e � 0, and Eq. (9) serves for the determination
of the correction of the mass ¯ow rate _m1. In both cases the
integral on the right-hand side of (9) participates in the solu-
tion. It can be readily shown by employing (6) that this inte-
gral behaves as ln p by approaching the critical cross section of
the nozzle. Thus, no matter what is given and what is required,
p1 or _m1 blow up at the critical cross-section, and singularities
at this section become even stronger in the second approxi-
mation, than in the ®rst one, because they are now associated
with the pressure and the mass ¯ow rate too. It is not di�cult
to reveal the source of singularities in both the ®rst order so-
lution and the second order solution. By approaching the
critical cross-section of the channel a local value of (Mach
number)2/Reynolds number, taken say at the centreline, in-
creases inde®nitely, which is contrary to one of the basic as-
sumptions of the theory (see Section 1). Thus, in the vicinity of
the critical cross-section inertia forces are not negligible, and
this vicinity ought to be treated separately, with the equations
containing inertia forces in addition to the viscous ones. Pos-
sible analytical solutions should then be asymptotically mat-
ched with the solutions obtained here, which is beyond the
scope of this work. So far, the question concerning the (®nite!)
value of the velocity at the exit of a channel of critical length is
open!

There is another e�ect, worth to note, which should be
taken into consideration in the vicinity of the critical cross-
section. This is the rarefaction e�ect. Namely, due to the sig-
ni®cant decrease of pressure that occurs close to the critical
cross-section of the channel, a local Knudsen number may
attain relatively large value, so that non-slip boundary con-
ditions cannot be applied. The simplest modi®cation of the
model considered herein, that can be performed in order to
meet the requirements imposed by the rare®ed gas dynamics,
is the application of slip boundary conditions (for the de®ni-
tion of so-called high order slip boundary conditions see
Beskok et al., 1996). Competing e�ects of compressibility,
viscous heating and rarefaction in channels of varying cross
section may throw new light on micro-channel gas ¯ow. We
hope to be able to publish results on that topic in the near
future.

In concluding this Section we will plot the ®rst order mass
¯ow rate through a nozzle consisting of plane walls:
d � 1� �de ÿ 1�n=l, where de is the exit half width of the
nozzle, versus de in Fig. 2. As expected, the mass ¯ow rate
increases de, this increase being very pronounced for divergent
nozzles (de > 1).
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4. Non-isothermal ¯ow

Non-isothermal gas ¯ows are more realistic than isothermal
ones, and we will discuss here a couple of characteristic
problems associated with the application of various boundary
conditions on the wall.

The energy equation (4), when the symmetry condition (3)
is employed, leads to a simple solution for the ®rst order
temperature as T � T �n�. When we treat the heating/cooling
problem in which constant or variable wall temperature Tw�n�
is given, the solution for the ®rst order temperature will read
T � Tw�n�, which means that the ®rst order heat ¯ux through
the wall will be zero, and one has to go to the next approxi-
mation in order to evaluate it. When we treat the adiabatic
wall problem, the corresponding boundary condition on the
wall is automatically satis®ed, and T �n� represents the so-
called eigen temperature, which remains undetermined at this
stage. As in the previous case, one has to go to the second
order equations to ®nd its value.

The solutions of the rest of Eq. (4) are readily found to be

pd3

lT
dp
dn
� ÿ3k _m; u � 3 _m

2

T
pd

1ÿ y2

d2

� �
;

V � 3 _m
2

T d0

pd
y
d

1ÿ y2

d2

� �
: �10�

Also, the second order energy equation can be routinely de-
rived from (1), solved for the second order temperature
T1�n; y�, and the heat ¯ux through the wall q�n� evaluated. In
this way, we obtain

l
@T1

@y

����
y�d

� Re Pr _mT 0 � q: �11�

Consequently, in the heating/cooling problem a second order
heat ¯ux exists only if the wall temperature varies over the
channel. In the adiabatic wall problem q� 0, and T� 1, which
means that this problem and the isothermal ¯ow problem
(Section 3) are identical to this order of approximation.

In what follows we will assume that a constant or variable
heat ¯ux q is given in advance and we will discuss its in¯uence
on the ¯ow characteristics. First, one can be disappointed by
the fact that in this problem the heat ¯ux through the wall is a
second order e�ect, although one of major motivations for this
and other related works is just the cooling of electronic cir-
cuits, superconducting magnets, etc., as stated in the Intro-
duction. However, a relatively small heat ¯ux does not a priori
mean that it cannot be usefully exploited, especially if one has

in mind the application of helium at 100 K (see Shajii and
Freidberg, 1996).

Integration of the equation for the pressure (10) between
the inlet station (n � 0) and an arbitrary cross section of the
channel leads to

1ÿ p2 � 6k _m
Zn

0

T 1�ndÿ3 dn; �12�

where n is the exponent in the power law dependence of
transport coe�cients on the temperature. This expression
represents an extension of (8) to non-isothermal ¯ows and can
be used in exactly the same way. The discussion concerning the
phenomenon of ``mathematical'' choking, performed earlier
(see Section 3), applies here too with some modi®cations. If
heat is added to the gas �q > 0�, the temperature increases
along the channel (11) and this makes the critical length of the
channel became shorter for a convergent nozzle, and longer for
a divergent one. Heat subtraction causes the drop of temper-
ature along the channel and a�ects the critical length con-
versely.

We will now focus our attention on the in¯uence of the
applied heat ¯ux on the mass ¯ow rate through a channel of
given length l and exit pressure pe P 0. For simplicity we will
assume that the heat ¯ux is constant and that the channel
consists of plane walls: d � 1� �de ÿ 1�n=l. For q � const. the
®rst-order temperature will be a linear function of n, as re-
vealed by (11): T � 1� Qn= _m, where Q � q=Re Pr, and the
exit temperature is obtained as Te � 1� A, with
A � Ql= _m P ÿ 1. It is readily shown in this case that expres-
sion (12), when applied for the exit cross-section of the chan-
nel, can be conveniently written in one of the following two
forms:

6kl _m
1ÿ p2

e

� 1

I�A� or
6kl2Q
1ÿ p2

e

� A
I�A� ; �13�

where

I�A� �
Z1

0

�1� At�1�n

�1� �de ÿ 1�t�3 dt:

Fig. 2. Mass ¯ow rate versus exit half-width of the channel for an

isothermal ¯ow.

Fig. 3. Dependence of the mass ¯ow rate on the heat ¯ux for n� 0.
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From the ®rst form we can easily prove that o _m=oA < 0. The
sign of the corresponding derivative oQ=oA cannot be readily
deduced from the second form. However, the only physically
acceptable ¯ow regime is one in which the exit temperature
increases by adding the heat to the ¯ow, which means that
oQ=oA > 0. Consequently, we will have o _m=oQ < 0, and the
mass ¯ow rate will decrease with the heat input. This is qual-
itatively contrary to the well known result of classical (invis-
cid!) Gas Dynamics (Rayleigh ¯ow).

When 6kl2Q=�1ÿ p2
e� is plotted versus A � Ql= _m, the re-

sults obtained by numerical evaluation of I(A) show some
qualitative dependence on n. For n� 0 and di�erent values of
de they are presented in Fig. 3.

All curves tend to some constant values as A!1 ± the
mass ¯ow rate drops to zero at some ®nite critical heat input

Qc, which increases with the opening of the channel de. Also,
some ®nite heat subtraction from the ¯ow, which increases
with de too, is necessary to reduce the exit temperature to zero
(A�ÿ1). For n > 0 the situation is physically di�erent in that
A as a function of Q is a double-valued function (see Fig. 4(a)
and (b)). The right (dotted!) branch should be rejected, how-
ever, because the exit temperature would decrease along this
branch with the addition of heat.

In addition to the critical heat ¯ux there is now a non-zero
critical mass ¯ow rate _mc. Critical heat ¯ux is much smaller for
any de than in the case n� 0, while the corresponding value of
the heat output necessary to reduce the exit temperature to
zero is greater. In Figs. 5 and 6 we plot critical values of heat
input and mass ¯ow rate, 6kl2Qc=�1ÿ p2

e � and 6kl2 _mc=�1ÿ p2
e �,

versus log de for di�erent n, respectively. They both increase
with de, the increase being particularly pronounced for diver-
gent nozzles. Since critical mass ¯ow rate is zero for n� 0, it
naturally increases with n. The opposite trend holds for the
critical heat ¯ux.

A natural question which can be put forward at this point is
related to the ¯ow regime for which Q > Qc. This regime was
discussed in details in Shajii and Freidberg (1996), and it was

Fig. 4. (a) Dependence of the mass ¯ow rate on the heat ¯ux for

n� 0.76 (b) Dependence of the mass ¯ow rate on the heat ¯ux for

n� 1.

Fig. 5. Critical heat input versus exit half-width of the channel.

Fig. 6. Critical mass ¯ow rate versus exit half-width of the channel.
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found that a steady ¯ow cannot be maintained in this case.
Numerical integration of unsteady ¯ow equations shows that
the gas is perpetually depleted from both the inlet and the
outlet cross-section of the pipe. We do not have any reason to
doubt that the situation in our case concerning this point
should be di�erent, and since our primary aim in the paper is
the study of the e�ect of variable cross-section of the channel
on the characteristics of low Mach number ¯ows, we will omit
the corresponding analysis of the regime Q > Qc from the
contents.

5. Conclusions

The analytical treatment of low Mach number, viscous
compressible ¯ow in micro-channels of slowly varying cross-
section, in this paper represents a rational extension of the
previously performed analyses of isothermal ¯ow between
parallel plates (see Schwartz, 1987), and non-isothermal ¯ow
with given heat ¯ux in a pipe (see Shajii and Freidberg, 1996).
All qualitatively important results obtained earlier have been
con®rmed on the example of the ¯ow treated in this paper, and
the e�ect of varying cross-section of the channel upon ¯ow
characteristics discussed. Therefore, the following major con-
clusions can be withdrawn:

(a) The phenomenon of ``mathematical'' choking, consist-
ing in the pressure drop to zero and in the inde®nite increase of
velocity components at some ®nite critical length of the
channel, is in¯uenced by the variable cross-section in isother-
mal ¯ow, in such a way that the critical length is much longer
in divergent nozzles, than in convergent ones. In non-isother-
mal ¯ow with heat addition this e�ect is even more pro-
nounced.

(b) Isothermal and adiabatic wall problems are identical
form the point of view of the ®rst order equations.

(c) Heat addition in non-isothermal ¯ow case causes the
decrease of the mass ¯ow rate through the channel, which is
contrary to the Rayleigh ¯ow known from the classical inviscid
Gas Dynamics. The steady regime of ¯ow is possible only if the

heat ¯ux is less than a critical value. If transport coe�cients
are temperature independent, the critical heat ¯ux reduces the
mass ¯ow rate to zero, and stops the ¯ow in the channel. If
their dependence on the temperature is pronounced, the criti-
cal heat ¯ux reduces the mass ¯ow rate to a non-zero positive
value ± the critical mass ¯ow rate. Both critical heat input and
critical mass ¯ow rate increase with the width of the channel
exit section, and this increase is very pronounced in divergent
channels.

(d) A ®nite heat subtraction is necessary to reduce the exit
temperature to zero. It increases with the opening of the
channel.

Engineers are usually prone to treat the low Mach number
compressible viscous ¯ow as the incompressible one, by using
some appropriately de®ned values of the friction coe�cient
and the heat transfer coe�cient for a laminar incompressible
¯ow. The results presented here and by previous authors, show
that such an analogy is not consistent with the theory. Both
¯ows di�er quantitatively as well as qualitatively, so that great
mistakes can be made if the theory of incompressible ¯ows is
applied for calculation of low Mach number compressible
¯ows.
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